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–Richard Feynman

“What I cannot create, I do not understand”
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Part 1 
Motivation

Why we need to study Text Generation



Text Generation is Important！

Natural language  generation is 
an indispensable part of human-

computer interaction! NLUNLG



Text Generation is Widely Used

Machine Translation 

ChatBOT Question Answering 



Text Generation is Non-Trivial

   

pθ(x′�) =
σ(x′�)

∑x σ(x)

min 𝔼x∼pdata
[−log pθ(x)]

Maximum Likelihood Estimation:



Text Generation is Non-Trivial

   

pθ(x′�) =
σ(x′�)

∑x σ(x)

min 𝔼x∼pdata
[−log pθ(x)]

Maximum Likelihood Estimation:

Partition function is exponential, 
intractable for computing.  



Part 2 
Taxonomy

Different Branches of Deep Generative Models for Text Generation



Taxonomy of DGM

Maximum Likelihood  Estimation

VAE Boltzmann Machine GSN, CGMH

GAN

pθ(x) ⟷ pdata(x)

Adversarial Learning

Tractable Density Approximate Density

Density Factorization 

RNN, Transformer

Variational Inference MCMC MCMC

Explicit Density Implicit Density



Part 3 
Text Generation by Density 

Decomposition
Decompose the joint distribution as a product of tractable conditionals.



Generation by Decomposition

Maximum Likelihood  Estimation

GAN

pθ(x) ⟷ pdata(x)

Adversarial Learning

Tractable Density Approximate Density

Density Factorization Variational Inference MCMC MCMC

Explicit Density Implicit Density



Decompose the joint distribution as a product 
of tractable conditionals:

Given x = [x1, x2, x3 . . . , xn]

• Directed, fully-observed graphical models:

pθ =
n

∏
i=1

pθ(xi |x1, x2, . . . , xi−1) =
n

∏
i=1

pθ(xi |x<i)

Tractable Density by 
Factorization



Parameterization by Neural 
Networks

pθ(x′ �i |x<i) =
σ(x′�i)

∑x′�i
σ(xi |x1…xi−1)
Vocabulary Size

Tractable for computing 



Parameterization by Neural 
Networks

pθ(x5 |x1, x2, x3, x4)

!x1 !x2 !x3 !x4

!x5



pθ(xi |x<i)

<BOS>

…

!x1 !x2 !x3

!x2 !x3

!x4 !xn

<EOS>!x1 !x4 !x5

Parameterization by Neural Networks



<BOS>

…

!x1 !x2 !x3

!x2 !x3

!x4 !xn

<EOS>!x1 !x4 !x5

Parameterization by Neural Networks

softmax

pθ(xi |x<i)



pθ(xi |x<i)

<BOS>

…

!x1 !x2 !x3

!x2 !x3

!x4 !xn

<EOS>!x1 !x4 !x5

Parameterization by Neural Networks
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softmax



Model 

min 𝔼x∼pdata
[−log pθ(x)]

Maximum Likelihood Estimation:

pθ(x) =
n

∏
i=1

pθ(xi |x1, x2, . . . , xi−1) =
n

∏
i=1

pθ(xi |x<i)

Parameterization by RNN 



BackPropagation by MLE

<BOS>

…

!x1 !x2 !x3

!x2 !x3

!x4 !xn

<EOS>!x1 !x4 !x5
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tiger

1

0

0

…

Cross Entropy 
Loss



Conditional

pθ(x |y)



Conditional

pθ(x |y)
Output Input



Conditional

min 𝔼x∼pdata
[−log pθ(x |y)]

Maximum Likelihood Estimation:

pθ(x |y) =
n

∏
i=1

pθ(xi |x1, x2, . . . , xi−1, y) =
n

∏
i=1

pθ(xi |x<i, y)

pθ(x |y)
Output Input



Conditional 

<BOS>

…
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!x4 !xn

<EOS>!x1 !x4 !x5

<BOS>

…
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!y4 !ym

<EOS>!y1 !y4 !y5

Decoder

Encoder
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Conditional 
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Decoding
log pθ(x |y) =

n

∑
i=1

log pθ(xi |x1, x2, . . . , xi−1, y) =
n

∑
i=1

log pθ(xi |x<i, y)

Decoding space is 
still exponential 



Beam Search
log pθ(x |y) =

n

∑
i=1

log pθ(xi |x1, x2, . . . , xi−1, y) =
n

∑
i=1

log pθ(xi |x<i, y)

Heuristic search 
by beam search 
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Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.
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An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
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queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the
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Vaswani et al., Kernelized Bayesian Softmax for Text  
Generation,  in NIPS, 2017.

Transformer abandon  
RNN by using  

Self-Attention!
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Kernelized Bayesian Softmax

Miao et al., Kernelized Bayesian Softmax for Text Generation, in NeurIPS, 2019.

P(xt = sj
i ) =

exp(𝒦θ j
i
(ht, wj

i))

∑k ∑r∈0,1,...,Nk
exp(𝒦θr

k
(ht, wr

k))

KerBS: Kernelized Bayesian Softmax

P(xt = i) = ∑
j∈0,1,...,Ni

P(xt = sj
i )

𝒦θ(h, e) = |h | |e | (a exp(−θ cos(h, e)) − a)

Here �  is hidden state,  �  is embedding, �  is a parameter controlling the embedding 

variances of each sense and �  is a normalization factor.

h e θ

a =
−θ

2(exp(−θ) + θ − 1))

where



Why KerBS?

Model capacity of softmax is not OK  

Motivated by BERT, we may need context dependent embedding for 
text generation! 

Word2Vec BERT

Category Context 
Independent 

Context 
Dependent

Capacity Low High

Performance Bad Good



Text Generation as Matching
Text Generation is Embedding Matching 

apple

amazon

pear

…
…

Word Embeddings

inner-product

0.8

0.01

0.02

…

Word  
Probability

tiger

want to eat an

want to eat an

softmax

RNN  
decoder

Context Independent  
Embedding

Context Dependent  
Embedding

庄⼦：吾⽣也有涯，⽽知也无涯。以有涯随无涯，殆已！



Bottleneck of Text Generation

Bottleneck of text generation is the softmax 

Embedding matrix in softmax should 
have larger capacity.  



Visualization of BERT

•Multi-Sense & Varying Variances 

Softmax can handle this situation



Visualization of BERT

•Multi-Sense & Varying Variances 

Softmax can’t handle multisense.



Visualization of BERT

•Multi-Sense & Varying Variances 

Softmax can’t handle multisense and varying variances.



KerBS - Multisense
Each word may have several senses. KerBS 
allocates a vector for each sense. 

0.1
0.5

W

apple

amazon

…
…

tiger

θ Psense

…
…

softmax aggregate0
0.01
0.01

0

0.6

0.02

…
…

0

apple

amazon

tiger

Pword



KerBS - Multisense

After getting the probabilities of each sense, 
KerBS sums up all sense probabilities of same 
word. 

P(xt = i) = ∑
j∈0,1,...,Ni

P(xt = sj
i )



KerBS - Varying Variances
The distribution of each word’s output vectors have different variances. 
We use a variable kernel to represent varying variances. 

P(xt = sj
i ) =

exp(𝒦θ j
i
(ht, wj

i))

∑k ∑r∈0,1,...,Nk
exp(𝒦θr

k
(ht, wr

k))

𝒦θ(h, e) = |h | |e | (a exp(−θ cos(h, e)) − a)

Note that when  , which is regular 
Euclidean norm! 

θ → 0,𝒦θ(h, e) → |h | |e | cos(h, e)



KerBS - Varying Variances

The distribution of each word’s output vectors have different 
variances. We use a variable kernel to represent varying variances. 



How to decide the sense 
number of each word?

Dynamically change each word’s sense number while training. 
Delete senses that are less used. Add senses to words which 
are not well fitted.



Dynamic Allocation
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I want a red



Theoretical Guarantee

KerBS has the ability to learn the multi-sense property. If the real 
distribution of context vectors consists of several disconnected 
clusters, KerBS will learn to represent as many as these clusters

Lemma 1

KerBS has the ability to learn model variances. For distributions 
with larger variances, KerBS learns larger � .θ

Lemma 2

KerBS can learn the multi-sense property.  

KerBS can learn varying variances.



Experiments-Setting

We test KerBS on 3 text generation tasks:

1. Machine Translation (MT) is conducted on IWSLT’16 De-En, 

which contains 196k pairs of sentences for training.

2. Language modeling (LM) is included. Following previous work, 

we use a 300k, 10k and 30k subset of One-Billion-Word 
Corpus for training, validating and testing.


3. Dialog generation (Dialog) is also included. We employ the 
DailyDialog dataset for experiment. 



Main Results

Tasks Metrics Seq2Seq Seq2Seq+MoS Seq2Seq+KerBS

MT BLEU-4 25.91 26.45 27.28

LM PPL 103.12 102.72 102.17

Dialog BLEU-1 16.56 13.73 17.85

Human Eval. 1.24 1.04 1.40



Case on Dialog

Source what do you mean ?
Seq2Seq i mean, what s up with the and iron bars on your windows.
Seq2Seq+MoS well, how can i put this? france is a terrible team.
Seq2Seq+KerB
S

well, i mean. we always do the same thing. there s no variety in 
our lives.

Source now , what seems to be the trouble ?
Seq2Seq trouble is trouble.
Seq2Seq+MoS yeah. and he was.
Seq2Seq+KerB
S

not bad. but i have a bad cold today.

Source now , what seems to be the trouble ?
Seq2Seq trouble is trouble.
Seq2Seq+MoS yeah. and he was.
Seq2Seq+KerB
S

not bad. but i have a bad cold today.



Related Research
1. Inductive Bias:

    Better Structure for Parameterization 

2. Non-AutoRegressive Generation

3. Pre-trained Learning by Generation

4. Application

    Story telling，machine translation，Summarization，Dialog，
Question Answering，etc.



Part 4 
Text Generation by Variational 

Auto-Encoders
Approximate Density with Variational Inference



Taxonomy of DGM

Maximum Likelihood  Estimation

GAN

pθ(x) ⟷ pdata(x)

Adversarial Learning

Tractable Density Approximate Density

Density Factorization Variational Inference MCMC MCMC

Explicit Density Implicit Density



Variational Auto-Encoders

pθ(x) = ∫z
p(x |z)p(z)

Introducing Latent Variable:

z

x



Variational Lower Bound

pθ(x) = ∫z
p(x |z)p(z)

Introducing Latent Variable:

Hard to optimize due to the exponential   z



Variational Lower Bound

pθ(x) = ∫z
p(x |z)p(z)

Introducing Latent Variable:

Optimizing the Variational Lower Bound

J = 𝔼
z∼q(z|x)

[−log p(x |z)] + KL(q(z |x)∥p(z))

Hard to optimize due to the exponential   z



Motivation of  VAE

① Why Including Latent Variables ？ 

② Why Variational Inference ？



Why Including Latent Variables ？

•Data	may	have	latent	structures!

MNIST HandWriting 



Why Including Latent Variables ？

•Data	may	have	latent	structures!

N = 8 



Why Including Latent Variables ？

•Data	may	have	latent	structures!

N = 8 N = 5 



Why Including Latent Variables ？

•Data	may	have	latent	structures!

N = 8 N = 5 



Why Including Latent Variables ？

•Data	may	have	latent	structures!

N = 8 N = 5 Left of 8 and right of 5 

We can avoid the last case 
with latent variable? 



Loss between Instances

Question1: Which pair is more similar? 

Question2: Which pair has lower loss? 



Loss between Instances

Question1: Which pair is more similar? 

Question2: Which pair has lower loss? 

Including Latent Variable may be good 
for generalization！



Why Including Latent Variables ？

Model capacity can be further improved

pθ(x) = ∫z
pθ(x |z)p(z)

With latent variable, we can present a very complex   
using relatively simple  ！ 
e.g. mixture of Gaussians can present distributions which are not Gaussians.

pθ(x)
pθ(x |z)

z

x



Why Variational Inference ？

pθ(x) = ∫z
pθ(x |z)p(z)

How to deal with the integral?

∑
all possible z

pθ(x, z) = |Z | (∑
z

pθ(x, z)
1

|Z |
) = |Z |𝔼z∼Uniform(Z)[pθ(x, z)]

Can be estimated by sample average

The expectation is intractable, we can use naive Monte-Carlo to 
estimate ？



Why Variational Inference ？

To most z,    is very small, we may also 
never hit z with large  . 

pθ(x, z)
pθ(x, z)

 

We need a more clever way to select �  to 
reduce the variance of the estimator.  

z

However, the naive Monte Carlo works in theory 
but not in practice!



Variational Inference-Importance 
Sampling Perspective

pθ(x) = ∫z
pθ(x |z)p(z)

= ∫z
Q(z)pθ(x |z)p(z)/Q(z)

= 𝔼z∼Q(z)pθ(x, z)/Q(z)

Introducing   as proposal in importance sampling, obtaining a 
less-variance estimation of  .  
Note that optimal   =  , with 0 variance. 

Q
pθ(x)

Q pθ(z |x)



Derivation of ELBO
We are actually interested in �  during MLE logpθ(x)

logpθ(x) = logEz∼Q[pθ(x, z)/Q(z)]
Jensen 

Inequality 
logpθ(x) ≥ Ez∼Qlog[pθ(x, z)/Q(z)]

Bayes Rule
logpθ(x) ≥ Ez∼Q[logpθ(x |z) + 𝕂𝕃[Q(z) | |P(z)]]

Replacing with 
amortization

logpθ(x) ≥ Ez∼Q[logpθ(x |z) + 𝕂𝕃[Q(z |x) | |P(z)]]



Another Derivation of ELBO

𝕂𝕃[Q(z) | |P(z |x)] = Ez∼Q[logQ(z) − logP(z |x)]

𝕂𝕃[Q(z) | |P(z |x)] = Ez∼Q[logQ(z) − logP(x |z) − logP(z)] + logP(x)

Bayes Rule 

logP(x) − 𝕂𝕃[Q(z) | |P(z |X)] = Ez∼Q[logP(X |z) − 𝕂𝕃[Q(z) | |P(z)]

Transposition

logP(x) − 𝕂𝕃[Q(z |X) | |P(z |X)] = Ez∼Q[logP(X |z) − 𝕂𝕃[Q(z |X) | |P(z)]

Replacing



“Auto-Encoder”

logP(x) − 𝕂𝕃[Q(z |X) | |P(z |X)] = Ez∼Q[logP(X |z) − 𝕂𝕃[Q(z |X) | |P(z)]

Decoder Encoder 

This is why such variational Bayes model is so 
called “Variational Auto-Encoder”



Training of  VAE

Training Reparameterization 
Carl Doersch, Tutorial on Variational Autoencoders, in arXiv:1606.05908.



Decoding



Back to the Motivation

• For text generation, the density is always decomposed 
（Auto-Regressive）. 

• What’s the benefits of VAEs?



VAE for Text Generation

Bowman et al., Generating Sentences from a Continuous Space, in CoNLL, 2016.



Latent Spaces of  VAE

AE                         VAE



Benefits of  VAE

• Regularized Latent Variables:
1. Sampling
2. Manipulating



VAE
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Latent Variable 
Hierarchical Recurrent 

Encoder-Decoder (VHRED) 
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Gaussian Mixture VAE 
(GMVAE)

VampPrior

(Chung et al., NIPS 2015)

(Bayer et al., ICLR 2015)

(Zhao et al., ACL 2018)

(Tomczak et al., AISTATS 2018)

(Dilokthanakul et al., ICLR 2017)

(Kingma et al., NIPS 2014)
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Spherical Latent Space
S-VAE

vMF-VAE

(Davidson et al., UAI 2018)

(Xu et al., EMNLP 2018)

VAE
Taxonomy
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Hierarchical Recurrent 

Encoder-Decoder (VHRED) 

CVAE

Gaussian Mixture VAE 
(GMVAE)

VampPrior

(Chung et al., NIPS 2015)

(Bayer et al., ICLR 2015)

(Zhao et al., ACL 2018)

(Tomczak et al., AISTATS 2018)

(Dilokthanakul et al., ICLR 2017)

(Kingma et al., NIPS 2014)

(Zhao et al., ACL 2017)

(Serban et al., AAAI 2017)

(Du et al., EMNLP 2018)

(Wiseman et al., EMNLP 2018)

(Kingma et al., NIPS 2016)

(Rezende et al., ICML 2015)

(Kim et al., ICML 2018)

(Makhzani, 2015) 
(Zhao et al., ICML 2018)

(Tolstikhin et al., ICLR 2017)

(Zhao et al., 2017)

(Zhao et al., ACL 2017)

(Higgins et al., ICLR 2017)

(Bowman et al., CoNLL 2015)

(He et al., ICLR 2019)

Spherical Latent Space
S-VAE

vMF-VAE

(Davidson et al., UAI 2018)

(Xu et al., EMNLP 2018)

VAE
Taxonomy

Improve PGM
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Variational Auto-Encoders

• VAE: Treating z as a random variable


- Imposing prior  

- Variational posterior


- Optimizing the variational lower bound

pmodel(x) = ∫z
p(x |z)p(z)

p(z) = 𝒩(0, I)
q(z |x) = 𝒩(μμμNN, diag σσσ2

NN)

J = 𝔼
z∼q(z|x)

[−log p(x |z)] + KL(q(z |x)∥p(z))



Variational Auto-Encoders

pmodel(x) = ∫z
p(x |z)p(z)

Stochastic encoder Autoregressive decoder



Disentangling Syntax and 
Semantics in Latent Space 

Bao et al., Generating Sentences from Disentangled Syntactic and Semantic Spaces, in ACL, 2019.



BLEU VS. PPL

Bao et al., Generating Sentences from Disentangled Syntactic and Semantic Spaces, in ACL, 2019.



BLEU VS. PPL

Bao et al., Generating Sentences from Disentangled Syntactic and Semantic Spaces, in ACL, 2019.



Gaussian Mixture VAE 

Shi et al., Fixing Gaussian Mixture VAEs for Interpretable Text Generation, in Arxiv, 1906.06719.



Mode-Collapse

Shi et al., Fixing Gaussian Mixture VAEs for Interpretable Text Generation, in arXiv, 1906.06719.



Theoretical Analysis

Shi et al., Fixing Gaussian Mixture VAEs for Interpretable Text Generation, in arXiv, 1906.06719.



Our Solution:

DGMVAE

Shi et al., Fixing Gaussian Mixture VAEs for Interpretable Text Generation, in arXiv, 1906.06719.



Visualization

Shi et al., Fixing Gaussian Mixture VAEs for Interpretable Text Generation, in arXiv, 1906.06719.



Results on PTB



Results on Dialog



Cases



Part 5 
Text Generation by MCMC

Text Generation without Explicit Density and in Arbitrary Order 



Taxonomy of DGM

Maximum Likelihood  Estimation

VAE Boltzmann Machine GSN, CGMH

GAN

pθ(x) ⟷ pdata(x)

Adversarial Learning

Tractable Density Approximate Density

Density Factorization 

RNN, Transformer

Variational Inference MCMC MCMC

Explicit Density Implicit Density



Generation by Sampling

• Could we better exploit sampling in text generation？ 

• Especially for some special cases!



Sampling has Larger Potentials

• sampling illustration for text generation


• GSN illustration



Problem Definition
• Generating sentence satisfying constraints:

• Hard constrains: Keyword must occur in sentences
–E.g. Juice -> Brand natural juice, specially made for 

you
• Soft constrains: Semantically similar to a given 

sentence (paraphrase)
–E.g. The movie is a great success -> It is one of my 

favorite movies



Advertisement Slogan by 
Constrained Generation

Rin clothes bright

Keywords from Advertiser Advertisement Slogan



Challenges



Main Idea of CGMH
• Instead of sampling from  directly, generate 

samples iteratively: 
–Starting with initial keywords
–next sentence based on modification of previous
–action proposals to modify the sentences

• Metropolis-Hastings Algorithm

 𝜋(𝑥)

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.



Metropolis Hastings Sampling

Metropolis-Hastings(MH) perform sampling by first proposes a 
transition, and then accepts or rejects the transition.  

! "# "$%&
= min	(1, / "# · 1 "$%& "#

/ "$%& · 1 "# "$%&
)

g is proposal distribution


State 1

State 4

State 3

State 2

Target 
Distribution



Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …
6 Insert Accept BMW , the sports car of daily life
7 Replace Accept BMW , the sports car of future life
8 Insert Accept BMW , the sports car of the future life
9 Delete Reject BMW , the sports car of the future life
10 Delete Accept BMW , the sports car of the future life
11 [Output] BMW , the sports car of the future



Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
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0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …
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CGMH

CGMH performs constrained generation by:

1. Pretrain Language Model prob;


2. Start from a initial sentence; 


3. Propose a new action and accept/reject the action.




Pretained LM in Target Distribution

ØWe set the stationary distribution as:
! " 	= % " · %' "

• %	 " = ∏ % ")|"+:)-. 	) is the probability of sentence 
in a general-purpose language model.

• %'(")= ∏ %'1 "2 is the indicator function showing 
whether constraints are satisfied.



CGMH: Action Proposal

ØWe use MH algorithm to sample from	" #
• From a sentence #$%&, we propose an action on one 

word of #$%&.
• Actions include:

1. Replacement: change a word to another one
2. Insertion: add a word
3. Deletion: remove a word 



CGMH: Acceptance Ratio

• Calculate the acceptance rate:
! "# "$%& = min	(1, / 01 ·3 "$%& "#

/ 0456 ·3 "# "$%& )

• Accept "# with probability ! "# "$%& Replacement Insertion Deletion

Generated sentences !"

Initial sentence !#

Select  a position of sentence !"$%

Select an action on !"$%

Accept / Reject !& according to 
'(!&|!"$%)
Accept: !" = !&
Reject: !" = !"$%

Calculate acceptance rate '(!&|!"$%)



Adversarial Example for Text

Zhang et al., Generating Fluent Adversarial Examples for Natural Languages, in ACL, 2019, short paper.

Generating adversarial example for text is hard! 
Because the text space is discrete, which is non-
trivial to apply adversarial gradients!



CGMH for Generating Fluent  
Adversarial Examples

Zhang et al., Generating Fluent Adversarial Examples for Natural Languages, in ACL, 2019, short paper.



CGMH for Generating Fluent  
Adversarial Examples

Zhang et al., Generating Fluent Adversarial Examples for Natural Languages, in ACL, 2019, short paper.



CGMH for Generating Fluent  
Adversarial Examples

Zhang et al., Generating Fluent Adversarial Examples for Natural Languages, in ACL, 2019, short paper.



Part 6 
Text Generation by Generative 

Adversarial Networks
Generation without Maximum Likelihood Estimation



Taxonomy of DGM

Maximum Likelihood  Estimation

VAE Boltzmann Machine GSN, CGMH

GAN

pθ(x) ⟷ pdata(x)

Adversarial Learning

Tractable Density Approximate Density

Density Factorization 

RNN, Transformer

Variational Inference MCMC MCMC

Explicit Density Implicit Density



What’s GAN ？

Generative Adversarial Networks:

z

x



Generator VS. Discriminator

Generator Discriminator

Fake Sentences

Real Sentences



Generator VS. Discriminator

Generator Discriminator

Fake Sentences

Real Sentences

Fake

Real



Generator VS. Discriminator

Generator Discriminator

Fake Sentences

Real Sentences

Real



Objective Revisit

Generative Adversarial Networks:



Essence of MLE

   

MLE = Minimizing KLD

Derivations in order: limit of summation turns into integral, flip max to min by negating, add a constant that doesn’t depends on  
θ, and apply definition of KL divergence.



GAN -> JSD
Derivation of GAN -> JSD



MLE VS. GAN

min 𝔼x∼pdata
[−log pθ(x |y)]

Maximum Likelihood Estimation:

pθ(x |y) =
n

∏
i=1

pθ(xi |x1, x2, . . . , xi−1, y) =
n

∏
i=1

pθ(xi |x<i, y)

Generative Adversarial Networks:

KLD VS. JSD



Motivation of GAN for Text 
Generation

• Exposure Bias 
• Discrepancy between training and inference 

• Multi-Modal Output
• GAN may better address the multi-modal output 

than MLE training



GAN for Text

Text is discrete, hard to propagate 
gradients from D to G ! 



BackPropagation Fails
• Sentence is discrete, BP fails in such case

• Policy Gradient
• Gumbel Softmax



Observations

GAN tend to generate less diverse sentences than MLE 
training.



Thank You!


