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“What | cannot create, | do not understand”

—Richard Feynman
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Part 1
Motivation

Why we need to study Text Generation



Text Generation is Important!
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Natural language generation is
an indispensable part of human-
. NLU computer interaction!

NLG




Text Generation is Widely Used

Machine Translation *
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ChatBOT Question Answering




Text Generation is Non-Trivial

Maximum Likelihood Estimation:

min &, , [—log py(x)]
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Text Generation is Non-Trivial

Maximum Likelihood Estimation:

min &, , [—log py(x)]

o(x’)

Y o)

Po(x’) =

Partition function is exponential,
infractable for computing.



Part 2
Taxonomy

Different Branches of Deep Generative Models for Text Generation



Taxonomy of DGM

p@(x) — pdata(x)

A ———

Maximum Likelihood Estimation Adversarial Learning
Explicit Density Implicit Density
Tractable Density Approximate Density
Density Factorization Variational Inference MCMC MCMC

RNN, Transformer VAE Boltzmann Machine GSN, CGMH



Part 3
Text Generation by Density
Decomposition

Decompose the joint distribution as a product of tractable conditionals.



Generation by Decomposition

p@(x) — pdata(x)

\

Maximum Likelihood Estimation Adversarial Learning
Explicit Density Implicit Density
Tractable Density Approximate Density

N

Density Factorization Variational Inference MCMC MCMC



Tractable Density by
Factorization

e Directed, fully-observed graphical models:

Decompose the joint distribution as a product
of tractable conditionals:

Given X = [XI’XZ’ X3 ... ,xn]

n n
Py = H pg(xi|x1,x2 ----- xi_1) = Hpe(xi|x<i)
=1 =1



Parameterization by Neural
Networks

o(x;)

fo o(X; | X .. X;_1)
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Vocabulary Size



Parameterization by Neural
Networks
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Parameterization by Neural Networks

p@(xi | X<i)

bbb bb



Parameterization by Neural Networks

p@(xi | X<i)

softmax

66548 1



Parameterization by Neural Networks

pé’(xi ‘ x<i)
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Model

Maximum Likelihood Estimation:

min E,_, [—log py(x)]

n n
Pe(x) = H p@(xi‘xlaxza ‘o ,xi_1) = Hpg(xi\x<,-)
i=1 =1

Parameterization by RNN



BackPropagation by MLE
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Cross Entropy
Loss



Conditional

Po(x|y)



Conditional

PoX|y)

Output  Input



Conditional

PoX|y)

Output  Input

Maximum Likelihood Estimation:

min _prdam[_ZOg pg(X‘Y)]

pe(x‘Y) = H pe(xi‘-xlaxz’ e ,xi_p)’) = Hpﬁ(xi‘x<ia y)
=1 =1




Conditional
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Conditional
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Conditional
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Decoding

Decoding space is
still exponential N T~



Beam Search

Heuristic search J
by beam search > >




Transformer

Transformer abandon
RNN by using
Self-Attentionl

Vaswani et al., Kernelized Bayesian Softmax for Text
Generation, in NIPS, 2017.
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Kernelized Bayesian Softmax

KerBS: Kernelized Bayesian Softmax

Px,=1) = 2 P(xt=slj)
j€O0,1,....N,

eXp(‘%Qlj(hta WZJ))
N, CXPp (‘%@,’C’(hta W]’g))

where P(x, = S{) =

K oh,e)=|h||e|(aexp(=0 cos(h,e)) —a)

Here h is hidden state, e is embedding, @ is a parameter controlling the embedding
—0
variances of each sense and a = is a normalization factor.

2(exp(—0) + 0 — 1))

Miao et al., Kernelized Bayesian Softmax for Text Generation, in NeurlIPS, 2019.



Why KerBS?

Word2Vec BERT
Cateaor Context Context
Jory Independent Dependent
Capacity Low High
Performance Bad Good

Motivated by BERT, we may need context dependent embedding for
text generation



Text Generation as Matching

Text Generation is Embedding Matching

Word Embeddings Prob";rfl -
Context Independent amazon R
Embedding rear [OOO0O 1_nne>l”€-Bp roduct X 001

softmax 0.02

tiger | OOQO0Q | —

want to eat dan

Nottorore ol
rr 11

decoder

want to eat dn

ETEALRIE Ml LR VLAREMILE > 75T |




Bottleneck of Text Generation

Bottleneck of text generation is the softmax

Embedding matrix in softmax should
have larger capacity.



Visualization of BERT

Multi-Sense & Varying Variances
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Softmax can handle this situation



Visualization of BERT

Multi-Sense & Varying Variances
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Softmax can’t handle multisense.




Visualization of BERT

Multi-Sense & Varying Variances
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Softmax can’t handle multisense and varying variances.




KerBS - Multisense

Each word may have several senses. KerBS
allocates a vector for each sense.
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KerBS - Multisense

After getting the probabilities of each sense,
KerBS sums up all sense probabilities of same
word.

Px,=1) = Z P(x, = Slj)

jeo,1,....N,



KerBS - Varying Variances

The distribution of each word's output vectors have different variances.
We use a variable kernel to represent varying variances.

CXP (% Qg(hp W{))
Zk Zreo,l N, eXp(‘%QI’g(hta W]lé))

K oh,e)=|h||e|(aexp(—0 cos(h,e)) —a)

P(x, = S{) =

ooooo

Note that when 8 — 0, % 4(h,e) — |h||e| cos(h, e), which is regular
Euclidean norm!



KerBS - Varying Variances

The distribution of each word's output vectors have different
variances. We use a variable kernel to represent varying variances.
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Figure 2: Kernel shapes of different 6.




How to decide the sense
number of each word?

Dynamically change each word's sense number while training.
Delete senses that are less used. senses to words which
are not well fitted.




Dynamic Allocation
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Theoretical Guarantee

Lannml

‘ji KerBS has the ability to learn the multi-sense property. If the real ,
¥ distribution of context vectors consists of several disconnected |
¢ clusters, KerBS will learn fo represent as many as these clusters

l Lemma 2 ;

' KerBS has the ability to learn model variances. For distributions
| with larger variances, KerBS learns larger 6.




Experiments-Setting

We test KerBS on 3 fext generation tasks:

1. Machine Translation (MT) is conducted on IWSLT 16 De-En,
which contains 196k pairs of sentences for training.

2. Language modeling (LM) is included. Following previous work,
we use a 300K, 10k and 30k subset of One-Billion-Word
Corpus for training, validating and tfesting.

3. Dialog generation (Dialog) is also included. We employ the
DailyDialog dataset for experiment.



Main Results

w Seq2Seq Seq2Seqg+MoS Seq2Seq+KerBS

BLEU-4 25.91 26.45 27.28
LM PPL 103.12 102.72 102.17
Dialog BLEU-1 16.56 13.73 17.85

Human Eval. 1.24 1.04 1.40



Case on Dialog

M what do you mean ?

Seq2Seq | mean, what s up with the and iron bars on your windows.
Seqg2Seg+MoS well, how can i put this? france is a terrible team.
Seq2Seq+KerB well, i mean. we always do the same thing. there s no variety in

M now , what seems to be the trouble ?

Seq2Seq trouble is trouble.
Seg2Seg+MoS yeah. and he was.
Seq2Seqg+KerB not bad. but i have a bad cold today.

M now , what seems to be the trouble ?

Seq2Seq trouble is trouble.
Seg2Seq+MoS yeah. and he was.
Seg2Seqg+KerB not bad. but i have a bad cold today.



Related Research

1. Inductive Bias:
Better Structure for Parameterization
2. Non-AutoRegressive Generation
Pre-trained Learning by Generation
4. Application

Story telling, machine translation, Summarization, Dialog,
Question Answering, etc.



Part 4
Text Generation by Variational
Auto-Encoders

Approximate Density with Variational Inference



Taxonomy of DGM

p@(x) — pdata(x)

\>

Maximum Likelihood Estimation Adversarial Learning
Explicit Density Implicit Density
Tractable Density Approximate Density

v .

Density Factorization Variational Inference MCMC MCMC



Variational Auto-Encoders

Introducing Latent Variable:

Po(Xx) = J px|2)p(z)

$




Variational Lower Bound

Introducing Latent Variable:

Po(x) = J px|2)p(z)

<

exponential z




Variational Lower Bound

Introducing Latent Variable:

Po(x) = J px|2)p(z)

Z
exponential 7




Motivation of VAE

(D Why Including Latent Variables ?

2 Why Variational Inference °



Why Including Latent Variables ?

* Data may have latent structures!
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Why Including Latent Variables ?

e Data may have latent structures!

8

N =



Why Including Latent Variables ?

e Data may have latent structures!
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Why Including Latent Variables ?

e Data may have latent structures!

85 &

N=28 =




Why Including Latent Variables ?

e Data may have latent structures!

§5 §

= Left of 8 and right of 5

We can avoid the last case
with latent variable?



Loss between Instances

Questionl: Which pair is more similar?



Loss between Instances

Including Latent Variable may be good
for generalization !



Why Including Latent Variables ?

Model capacity can be further improved

()
\

Py(X) = J po(x|2)p(2)

Z N\,
X

With latent variable, we can present a very complex p(x)

using relatively simple py(x|z) !
e.g. mixture of Gaussians can present distributions which are not Gaussians.




Why Variational Inference ?

pPox) = | po(x|2)p(z)

How to deal with the integral?

The expectation is intractable, we can use naive Monte-Carlo to
estimate ?

Can be estimated by sample average

Y pixo) =12 (Zpg(x Z)ﬁ) = | ZIE - tmiformz [P 2]

all possible 7



Why Variational Inference ?

However, the naive Monte Carlo works in theory
but not in practice!

To most z, py(x, 7) is very small, we may also
never hit z with large py(x, 2).

We need a more clever way to select z to
reduce the variance of the estimator.



Variational Inference-Importance
Sampling Perspective

Po(x) = J po(x|2)p(z)

<

— J O2)py(x | 2)p(2)/0(z)

=~ 0(2)PeXs 21 Q(2)

Introducing O as proposal in importance sampling, obtaining a
less-variance estimation of py(x).
Note that optimal O = p,(z|x), with O variance.



Derivation of ELBO

We are actually interested in logp,(x) during MLE

logpy(x) = logE. ol pe(x, 2)/ Q(2)]
i Jensen
¥ Inequality

logpy(x) = E,_ploglpe(x, 2)/Q(2)]

i Bayes Rule
logpy(x) 2 E._yllogpy(x|2) + KLIQ(2) | | P(2)]]

]

logpe(x) 2 E,, pllogpy(x|2) + KLIQ(z]x) [ | P(2)]]



Another Derivation of ELBO

KLIQ()| | P(z| )] = E,,[l0gQ(z) — logP(z| )]

i Bayes Rule

KLIQ@) || P(z|x)] = E, ,pllogQ(z) — logP(x|z) — logP(z)] + logP(x)
$ Transposition

logP(x) — KL[Q(2) | | P(z| X)] = E, yllogP(X|z) — KL[Q(2) | | P(2)]

logP(x) — KL[Q(z| X) [ | P(z| X)] = E, pllogP(X|z) — KL[Q(z| X) | | P(z)]



“Auto-Encoder”

logP(x) — KL[Q(z| X) | | P(z| X)] = E, pllogP(X|z) — KL[Q(z| X) | | P(z)]

Decoder Encoder

This is why such variational Bayes model is so
called “Variational Auto-Encoder”



Training of VAE

5 I p
|X - fG)IP] X - fG)IP
1 | i\
fz)] f(2)
i\ | i\
Decoder | 1 [ICLIN (11(X), S(X))[[N(0, D]] | Decoder
KLIN (u(X), S(X))[IN (0, 1)] ‘;’ - A A (P)
Sample z from N (p(X), (X)) :
I
I
- [))E
I
Encoder : Encoder Sample € from N (0, )
Q) | (@)
|
i\ | 1
X : X
Training Reparameterization

Carl Doersch, Tutorial on Variational Autoencoders, in arXiv:1606.05908.



Decoding

f(2)
i\

Decoder
(P)

1

Sample z from N (0, )




Back to the Motivation

e For text generation, the density is always decomposed
- (Auto-Regressive) . |

{3 * What's the benefits of VAESs? '




VAE for Text Generation

RNNs work <EOS>
linear |— Decoding | |Decoding | | Decoding
< D LSTM —> LSTM —> LSTM
linear —5 Cell Cell Cell
RNNs work <EOS> RNNs work

Bowman et al., Generating Sentences from a Continuous Space, in CoNLL, 2016.



Latent Spaces of VAE

AE VAE

o




Benefits of VAE

o Regularized Latent Variables:
|. Sampling
2. Manipulating

&




(Zhao et al., ACL 2018)

' Variational RNN (VRNN) | (Chung et al., NIPS 2015)
Sequential
VA I latent variables \‘ Stochastic RNN ‘ (Bayer et al., ICLR 2015)

' Discrete VAE/DI-VAE |

Gaussian Mixture VAE ‘ .
I (GMVAE) (Dilokthanakul et al., ICLR 2017)

1 VampPrior | (Tomczak et al., AISTATS 2018)

I Complex prior ‘
aXO n O I I I ‘ Semi-supervised VAE ‘(ngma et al., NIPS 2014)
| SVAE (Davidson et al., UAI 2018)

Spherical Latent Space
VME-VAE (Xu et al., EMNLP 2018)

CVAE (Zhao et al., ACL 2017)
. Latent Variable
Global latent bl
/ Hierarchical Recurrent | (Serban et al., AAAI 2017)

" "/'\Encoder-Decoder (VHRED)
Conditional VAE S Step-by-step latent variable — :
L | Variational Autoregressive | (Dy et al., EMNLP 2018)
= Decoder (VAD)
(Semi-)Hidden Markov latent
variable ”*””*"‘ Neural Template ‘(Wiseman et al., EMNLP 2018)

‘ Normalizing Flows ‘ (Rezende et al., ICML 2015)

Mixture Priors

‘ Inverse Autoregressive Flow (IAF) ‘ (Kingma et al., NIPS 2016)

Posterior
Semi-amortized

Replacing KLD

- SAVAE  (Kimetal., ICML2018)

‘ (Makhzani, 2015)

- AAE/ARAE | (7haoetal., ICML 2018)

~ (Tolstikhin et al., ICLR 2017)

j Mutual Information
Adding extra pe—
Lene PRI (Zhao et al., ACL 2017)

\ Beta-VAE ‘(Higginsetal.,ICLR2017)

Re-weighting KL

Info-VAE | (Zhao et al., 2017)

Word dropout

/:./. (Bowman et al., CoNLL 2015)
— sfﬂ‘ KL-annealing ‘

~_

T
—

Aggressive Training  (He et al., ICLR 2019)




VAE
Taxonomy

VAE

r

\

I | variationat N (RN 1

Variational RNN (VRNN) | (Chung et al., NIPS 2015)
Sequential
latent variables | Stochastic RNN | (Bayer et al., ICLR 2015)
(Zhao et al., ACL 2018)

Gaussian Mixture VAE
(GMVAE)

VampPrior

|Improve PGM

Discrete VAE/DI-VAE
Dis | (Dilokthanakul et al., ICLR 2017)

‘ Semi-supervised VAE ‘(Kingma et al., NIPS 2014)
S-VAE  (Davidson et al., UAI 2018

(Xu et al., EMNLP 2018)
) CVAE (Zbao et al., ACL 2017)

- [ Latent Variable h
Global latent variable
/- Hierarchical Recurre (Serban et al., AAAI 2017)

Mixture Priors | (Tomczjik et al., AISTATS 2018)

Complex prior

Spherical Latent Space

" o /'\Encoder-Decoder (VHRED)
Conditional VAE sl Step-by-step latent variable -
— Variational Autoregress &e (Du et al., EMNLP 2018)

= Decoder (VAD)
(Semi-)Hidden Markov latent

variable ’*****" Neural Template [(Wiseman et al., EMNLP 2018)

‘ (Rezende et al., ICML 2015)

Normalizing Flows

‘ Inverse Autoregressive Flow (IAF) ‘ (Kingma et al., NIPS 2016)

Posterior

SNEOEN  SAVAE | (Kim et al,, ICML 2018)
. (Makhzani, 2015)
Adversarial loss —‘ AAE/ARAE (Zhao et al., ICML 2018)
Replacing KLD
WAE ~ (Tolstikhin et al., ICLR 2017)

j Mutual Information
Adding extra .
Lene PRI (7hao et al., ACL 2017)

\ Beta-VAE ‘(Higginsetal.,ICLR2017)

Re-weighting KL

Info-VAE | (Zhao et al., 2017)

Word dropout

(Bowman et al., CoNLL 2015)

KL-annealing ‘

Aggressive Training  (He et al., ICLR 2019)
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Variational Auto-Encoders

pmodel(x) — J' p(x ‘ Z)p(Z)

Z

* VAE: Treating z as a random variable
- Imposing prior pz) = (0,1
- Variational posterior ¢(Z2 |lx) =N (IINN, diag 0'1%1\1)

- Optimizing the variational lower bound

J = 2 )[—IOgP(X\Z)] + KL(g(z| x)||p(2))
z~q(z|x




Variational Auto-Encoders

pmodel(x) — J p(x | Z)p(Z)

$

0S ¢ oo

| | | |

<« ] | t/ Arv< Y( v< .
N o

the cat sat on

Stochastic encoder Autoregressive decoder



Disentangling Syntax and
Semantics in Latent Space

Irec

r---This is .. [ adv)

(mul)
. _ ‘Csyn
== = (adv)
v'v = ‘Csem
Zsyn
This is
—» > —» >}
This is
~sem AL B (mul)
> ‘Csem (adv)
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‘Csyn

‘--.This is .. £@dv)

Irec

Bao et al., Generating Sentences from Disentangled Syntactic and Semantic Spaces, in ACL, 2019.



BLEU VS. PPL
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Forward-PPL

Bao et al., Generating Sentences from Disentangled Syntactic and Semantic Spaces, in ACL, 2019.



BLEU VS. PPL

Model Reverse PPL*
Real data 70.76
LSTM-LM 132.46
PRPN-LM 116.67
VAE 125.86
DSS-VAE 116.23

Table 2: Reverse PPL reflect the diversity and fluency
of sampling data, the lower", the better. Training on
the model sampled and evaluated on the real test set.
We set the same KL weight for DSS-VAE and VAE
here.(KL weight=1.0)

Model

BLEU-ref’ BLEU-ori*

Origin Sentence’
VAE-SVG-eq (supervised)?
VAE (unsupervised)'
CGMH'

DSS-VAE

30.49 100
22.90 -
9.25 27.23
18.85 50.18
20.54 52.77

Table 3: Performance of paraphrase generation. The
larger™ (or lower'), the better. Some results are quoted
from TMiao et al. (2019) and *Gupta et al. (2018).

Bao et al., Generating Sentences from Disentangled Syntactic and Semantic Spaces, in ACL, 2019.



Gaussian Mixture VAE

A 4 I I
X

(a) VAE (b) DI-VAE (c) semi-VAE (d) GMVAE

Shi et al., Fixing Gaussian Mixture VAEs for Interpretable Text Generation, in Arxiv, 1906.06719.



Mode-Collapse

Remind me about my meeting.

Will it be humid in New York today?

(a) GMVAE

Shi et al., Fixing Gaussian Mixture VAEs for Interpretable Text Generation, in arXiv, 1906.06719.



Theoretical Analysis

| Theorem 1. Maximizing the R. pushes a close upper bound of Varys, S, ,, to decrease. Here

E Sy, = > on (e — k)T (g — wik) is the squared sum of distance between py, and fiy.

Theorem 2. R, contains a negative regularization term of Var, »(clz) Me-

i 'R , could be re-written as

p(z|C) . 1
Egy(2l2) ;%(CIQS) log o) = KL(g¢(2|2)||p(22))) — 535 Varg, (c|z) He; |

Shi et al., Fixing Gaussian Mixture VAEs for Interpretable Text Generation, in arXiv, 1906.06719.



DGMVAE

| Theorem 1. Maximizing the R. pushes a close upper bound of Varys, S, ,, to decrease. Here

 Sue = 2k (g — k)" (e — pi) is the squared sum of distance between fu; and [i4.

Theorem 2. R, contains a negative regularization term of Var, »(clz) M-

i 'R , could be re-written as

p(zlc) : 1 |
Egy (212) ;qcp(CIfL‘) log o) KL(ge(2|2)||p(2]2))) — 53 Varg, (clz) He |

Our Solution:

Ex By (212) 108 96 (2]2) — KL(g4(0)|[p(0)) — Ex[KL(ge(]2)[[(2]2)))] — B Ex Varg, cja) e

Shi et al., Fixing Gaussian Mixture VAEs for Interpretable Text Generation, in arXiv, 1906.06719.



Visualization
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(h) DGMVAE #10000

Shi et al., Fixing Gaussian Mixture VAEs for Interpretable Text Generation, in arXiv, 1906.06719.




Results on PIB

Evaluation Results

Regularization Terms

Model rPPL* | BLEUT | wKL* | PPL* KL(z) | KL(c) | VM MI
Test Set - 100.0 0.14 - - - - -
RNNLM (Mikolov et al., 2010) - - - 117.60 - - - -
AE (Vincent et al., 2010) 730.81 10.88 0.58 31.90 - - - -
VAE (Kingma and Welling, 2013) | 922.71 3.73 0.76 91.95 6.62 - - -
DAE 797.17 3.93 0.58 88.55 - - - -
DVAE 453.53 3.61 0.58 100.56 - 1.74 - 1.22
DI-VAE (Zhao et al., 2018b) 425.11 4.19 0.69 93.72 - 0.13 - 1.26
semi-VAE (Kingma et al., 2014) 779.53 3.59 0.79 93.78 6.97 0.02 - 0.019
semi-VAE + L 721.34 4.87 0.73 92.95 0.49 0.14 - 1.34
GMVAE 923.66 4.17 0.80 90.26 7.13 0.02 0.38 | 0.016
DGMVAE — L, 331.80 6.34 0.45 61.77 13.03 0.10 9.93 1.30
DGMVAE — L 560.56 5.64 0.62 71.12 3.87 0.31 24.84 | 0.28
DGMVAE 244.30 8.45 0.35 49.60 6.41 0.10 | 2142 | 1.19




Results on Dialog

DD Automatic Metrics
Model MI BLEUT | act’ | em' Model BLEU | Ave. Ext. Grd.
DI-VAE 730 305 515 1 0.09 DI-VAE 7.06 76.17 | 4398 | 60.92
AR 503 e 005 008 DGMVAE | 10.16 | 7893 | 48.14 | 64.87
semi-VAE + L | 121 3.69 021 | 0.14 Human Evaluation
GMVAE 0.00 2.03 008 | 0.02 Model Quality Consistency
DGMVAE — Lve | 141 | 296 | 0.19 | 0.09 DI-VAE 231 3.08
DGMVAE — L.; | 0.53 7.63 0.11 | 0.09 DGMVAE 2.45 3.35
DGMVAE 132 | 739 | 023 | 0.16 Table 3: Dialog evaluation results on SMD. Four

Table 2: Results of interpretable language gen- automatic metrics: BLEU, average (Ave.), extrema
eration on DD. Mutual information (MI), BLEU (Ext.) and greedy (Grd.) word embedding based
and homogeneity with actions (act) and emotions similarity are shown. Response quality and consis-
(em) are shown. The larger?, the better. tency within the same c are scored by human.



Cases

Act | Inform-route/address Context | Sys: Taking you to Chevron.

Utt There is a Safeway 4 miles away. Predict (1-1-3, thanks) Thank you car, let’s go there!
There are no hospitals within 2 miles. (1-0-2, request-address) What is the address?
There is Jing Jing and PF Changs. Context | User: Make an appointment for the doctor.

Act | Request-weather Predict (3-2-4, set-reminder) Setting a reminder for

Utt | What is the weather today? your doctor’s appointment on the 12th at 3pm.
What is the weather like in the city? (3-0-4, request-time) What time would you
What’s the weather forecast in New York? like to be schedule your doctor’s appointment?

Table 4: Example actions (Act) and corre- Table 5: Dialog cases on SMD, which are generated
sponding utterances (Utt) discovered by DG- by sampling different ¢ from policy network. The
MVAE on SMD. The action name is annotated label of sampled c are listed in parentheses with the
by experts. annotated action name.



Part 5

Text Generation by MCMC

Text Generation without Explicit Density and in Arbitrary Order



Taxonomy of DGM

p@(x) — pdata(x)

\

Maximum Likelihood Estimation Adversarial Learning
Explicit Density Implicit Density
Tractable Density Approximate Density
Density Factorization Variational Inference MCMC MCMC

RNN, Transformer VAE Boltzmann Machine GSN, CGMH



Generation by Sampling

ﬁ * Could we better exploit sampling in text generation? ﬁ

|+ Especially for some special cases!



Sampling has Larger Potentials

Sampling Can Be Faster Than Optimization

Yi-An Ma?, Yuansi Chen®, Chi Jin?, Nicolas Flammarion?, and Michael I. Jordan*® P

®Department of Electrical Engineering and Computer Sciences, University of California,

Berkeley, CA 94720
bDepartment of Statistics, University of California, Berkeley, CA 94720

November 21, 2018



Problem Definition

* Generating sentence satisfying constraints:
* Hard constrains:

—E.g. Juice -> Brand natural juice, specially made for
you

e Soft constrains:

—E.g. The movie is a great success -> It is one of my
favorite movies



Advertisement Slogan by
Constrained Generation

Keywords from Advertiser Advertisement Slogan

Rin clothes bright »




Challenges

e To generation samples (sentences) from
the target distribution

w(x) = HP(x,\szt_l) -HPé(x)

4

/
language model probability

Indicator(0-1) function for
constraints
« (x) is high-dimensional, and no direct
sampling method.




Main ldea of CGMH

* Instead of sampling from z(x) directly, generate
samples iteratively:

—Starting with initial keywords
—next sentence based on modification of previous
—action proposals to modify the sentences

* Metropolis-Hastings Algorithm

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.



Metropolis Hastings Sampling

Metropolis-Hastings(MH) perform sampling by first proposes a
transition, and then accepts or rejects the transition.

A(xllxt—l) State 1
. m(x") - g(xe_q]x") State 2
= mln(l’ / State 3
m(xe—1) - g(x'|xe—1)
State 4
g is proposal distribution Target 4

Distribution



Sampling in Sentence Space

CGMH performs Metropolis-Hastings sampling directly in sentence space:
Step |Action Acc/Rej |Sentences

0 Input] BMW sports

1 nsert Accept  |BMW sports car

2 nsert Accept  |BMW the sports car

6 Insert Accept |BMW, the sports car of daily life

7/ Accept  |BMW , the sports car of future life

8 nsert Accept  |BMW , the sports car of the future life
9 Delete Reject BMW , the sports car of the future life
10 Delete Accept |BMW, the sports car of the future life
11 Output] BMW , the sports car of the future

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.
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CGMH

CGMH performs constrained generation by:
1. Pretrain Language Model prob;
2. Start from a initial sentence;

3. Propose a new action and /reject the action.



Pretained LM in Target Distribution

» We set the stationary distribution as:

m(x) =P(x) - Pc(x)

P (x) =]l P(x¢|xq..—1) is the probability of sentence
in a general-purpose language model.

e P.(x)=TI; P:(x) is the indicator function showing
whether constraints are satisfied.



CGMH:Action Proposal

»We use MH algorithm to sample from m(x)
* From a sentence x;_,, We propose an action on one
word of x;_;.

* Actions include:
: change a word to another one

2. Insertion: add a word
: remove a word



CGMH:Acceptance Ratio

A(x"|x;—1) = min(1,

n(x")-g(X¢—1]x")

e Calculate the acceptance rate:

m(xe-1) g (X' |Xg_1)

)

* Accept x" with probability A(x'|x;_q1)

Initial sentence x,,

Select a position of sentence x¢—1

Select an action on x;_,

PN
- I >~
// | ~
~
-~ ~
« v >
Replacement Insertion Deletion
~ ~ I — -
~
~ - I - -
NS

Calculate acceptance rate A(x'|x;—1)

7

Accept / Reject x" according to )
A(x|xe-1)

Accept: x; = x'

Reject: x¢ = X¢—1 )

Generated sentences x¢



Adversarial Example for Text

Genem‘rmg adversarial example for text is hard! i
|Because the text space is discrete, which is non- | |
Trlvual Yo apply adversarial gradients! |

Zhang et al., Generating Fluent Adversarial Examples for Natural Languages, in ACL, 2019, short paper.



CGMH for Generating Fluent
Adversarial Examples

i reglly like this movie —| b 99% Positive (&
i truely like tl;is movie — —» 82% Positive (&
I truely like the movie — Se”"'".‘?”t —»76% Positive (&
Y Classifier

we truely like the mo'vie — —» 68% Positive (&
we truely like the show — —#59% Negative (**

Zhang et al., Generating Fluent Adversarial Examples for Natural Languages, in ACL, 2019, short paper.



CGMH for Generating Fluent
Adversarial Examples
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Zhang et al., Generating Fluent Adversarial Examples for Natural Languages, in ACL, 2019, short paper.



CGMH for Generating Fluent
Adversarial Examples

Task  Approach Succ(%) Invok# PPL (%)

Genetic 08.7 1427.5 421.1 —
b-MHA 08.7 1372.1 3856 179
w-MHA 99.9 748.2 375.3 344
Genetic 76.8 971.9 834.1 —
b-MHA 86.6 681.7 358.8 9.7
w-MHA 88.6 525.0 3324 13.3

SNLI | IMDB

Zhang et al., Generating Fluent Adversarial Examples for Natural Languages, in ACL, 2019, short paper.



Part 6
Text Generation by Generative
Adversarial Networks

Generation without Maximum Likelihood Estimation



Taxonomy of DGM

p@(x) — pdata(x)

|

Maximum Likelihood Estimation Adversarial Learning
Explicit Density Implicit Density
Tractable Density Approximate Density
Density Factorization Variational Inference MCMC MCMC

RNN, Transformer VAE Boltzmann Machine GSN, CGMH



What’s GAN ?

Generative Adversarial Networks:

chi;Il mgx L(D, G) — ":a:rvp,,.(a:) lOg D(ZU)

— 'Ea:fvpf,«(a:) :lOg D(CB)




Generator VS. Discriminator

Generator Discriminator



Generator VS. Discriminator

Generator Discriminator



Generator VS. Discriminator

Generator Discriminator



Objective Revisit

Generative Adversarial Networks:

minmax L(D,G) = E

G

D

“x~p,(T)

t:z:rvp,,n(a:)

log D(x)

8 mop. () [l0g(1 — D(G(2)))]

log D(x)

<Ear:rvpg(ar:) [lOg(l _ D(CE)]




Essence of MLE

MLE = Minimizing KLD

Recall that for continuous distributions P and @), the KL divergence is

P(z)
Q(z)

In the limit (as T — 00), samples will appear based on the data distribution P,, so

KL(P||Q) = /P(a:) log dz

lim max — Z log Py(?) = max / P.(z)log Py(x) dz

m—00 §cRe M fcRd

= min— | P.(z)log Py(z)d
min / (z) log Py(z) dz

— gni% / P.(z)log P.(z) de — /Pr (z) log Py(x) dx
eR x

— min KL(P,||P
min K L(F:[|F5)

Derivations in order: limit of summation turns into integral, flip max to min by negating, add a constant that doesn’t depends on
0, and apply definition of KL divergence.




GAN -> |SD

Derivation of GAN -> |SD

L(G,D") = / (Pr(X) log(D*(x)) + pg(x) log(1 — D* (x)))dx

1 1
= log > /pr(x)dx + log > /pg(x)dx
= —2log?2

1 DPr + Dg 1 g

DJS(pr”pg)=§DKL(pr” > ) + EDKL(pg”

2
1 pr(x)
—2<log2+/xpr(x) log P )

1 Pg(X)
5<log2+/xpg(x)log r+pg(x)

1
=2 < log4 + L(G, D*))

L(G, D*) = 2D;s(p:llpg) — 210g 2



MLE V5. GAN

Maximum Likelihood Estimation:

Generative Adversarial Networks:
min k., [=10g py(x|¥)] min max L(D, G) = Egnp, (108 D(@)] + E.np. (o log(1 — D(G(2)))]
= wa\/pr(x) [1Og D(.CU)] + E:L'Npg(w) [log(l - D(w)]

n n
py(x|y) = H Po(X; [ X1, X9, -5 X1, ) = Hpe(xi|x<i’ y)
i=1 i=1

KLD VS. |SD



Motivation of GAN for Text
Generation

* Exposure Bias
* Discrepancy between training and inference
* Multi-Modal Output

* GAN may better address the multi-modal output
than MLE training



GAN for Text

Text is discrete, hard o propagate
gradien’rs from D to G | '




BackPropagation Fails

 Sentence is discrete, BP fails in such case
* Policy Gradient
e Gumbel Softmax



Observations

GAN tend to generate less diverse sentences than MLE
training.




Thank You!



