
Deep Generative Model
for

Text Generation

李磊 周浩

–Richard Feynman

“What I cannot create, I do not understand”

Outline

• Motivation

1. Text Generation is Crucial but Non-trivial

• Taxonomy of deep generative models

2. Explicit Density

① Density Decomposition
② Approximation by Variational Inference

3. Implicit Density
③ Constrained Generation by Metropolis Hastings
④ Generative Adversarial Networks

• Conclusion

Part 1
Motivation

Why we need to study Text Generation

Text Generation is Important！

Natural language generation is
an indispensable part of human-

computer interaction! NLUNLG

Text Generation is Widely Used

Machine Translation

ChatBOT Question Answering

Text Generation is Non-Trivial

pθ(x′�) =
σ(x′�)

∑x σ(x)

min 𝔼x∼pdata
[−log pθ(x)]

Maximum Likelihood Estimation:

Text Generation is Non-Trivial

pθ(x′�) =
σ(x′�)

∑x σ(x)

min 𝔼x∼pdata
[−log pθ(x)]

Maximum Likelihood Estimation:

Partition function is exponential,
intractable for computing.

Part 2
Taxonomy

Different Branches of Deep Generative Models for Text Generation

Taxonomy of DGM

Maximum Likelihood Estimation

VAE Boltzmann Machine GSN, CGMH

GAN

pθ(x) ⟷ pdata(x)

Adversarial Learning

Tractable Density Approximate Density

Density Factorization

RNN, Transformer

Variational Inference MCMC MCMC

Explicit Density Implicit Density

Part 3
Text Generation by Density

Decomposition
Decompose the joint distribution as a product of tractable conditionals.

Generation by Decomposition

Maximum Likelihood Estimation

GAN

pθ(x) ⟷ pdata(x)

Adversarial Learning

Tractable Density Approximate Density

Density Factorization Variational Inference MCMC MCMC

Explicit Density Implicit Density

Decompose the joint distribution as a product
of tractable conditionals:

Given x = [x1, x2, x3 . . . , xn]

• Directed, fully-observed graphical models:

pθ =
n

∏
i=1

pθ(xi |x1, x2, . . . , xi−1) =
n

∏
i=1

pθ(xi |x<i)

Tractable Density by
Factorization

Parameterization by Neural
Networks

pθ(x′ �i |x<i) =
σ(x′�i)

∑x′�i
σ(xi |x1…xi−1)
Vocabulary Size

Tractable for computing

Parameterization by Neural
Networks

pθ(x5 |x1, x2, x3, x4)

!x1 !x2 !x3 !x4

!x5

pθ(xi |x<i)

<BOS>

…

!x1 !x2 !x3

!x2 !x3

!x4 !xn

<EOS>!x1 !x4 !x5

Parameterization by Neural Networks

<BOS>

…

!x1 !x2 !x3

!x2 !x3

!x4 !xn

<EOS>!x1 !x4 !x5

Parameterization by Neural Networks

softmax

pθ(xi |x<i)

pθ(xi |x<i)

<BOS>

…

!x1 !x2 !x3

!x2 !x3

!x4 !xn

<EOS>!x1 !x4 !x5

Parameterization by Neural Networks

apple

amazon

pear

…
…

Word Embeddings

inner-product

0.8

0.01

0.02

…

Word
Probability

tiger

softmax

softmax

Model

min 𝔼x∼pdata
[−log pθ(x)]

Maximum Likelihood Estimation:

pθ(x) =
n

∏
i=1

pθ(xi |x1, x2, . . . , xi−1) =
n

∏
i=1

pθ(xi |x<i)

Parameterization by RNN

BackPropagation by MLE

<BOS>

…

!x1 !x2 !x3

!x2 !x3

!x4 !xn

<EOS>!x1 !x4 !x5

apple

amazon

pear

…
…

0.8

0.01

0.02

…
tiger

1

0

0

…

Cross Entropy
Loss

Conditional

pθ(x |y)

Conditional

pθ(x |y)
Output Input

Conditional

min 𝔼x∼pdata
[−log pθ(x |y)]

Maximum Likelihood Estimation:

pθ(x |y) =
n

∏
i=1

pθ(xi |x1, x2, . . . , xi−1, y) =
n

∏
i=1

pθ(xi |x<i, y)

pθ(x |y)
Output Input

Conditional

<BOS>

…

!x1 !x2 !x3

!x2 !x3

!x4 !xn

<EOS>!x1 !x4 !x5

<BOS>

…

!y1 !y2 !y3

!y2 !y3

!y4 !ym

<EOS>!y1 !y4 !y5

Decoder

Encoder

Conditional

<BOS>

…

!x1 !x2 !x3

!x2 !x3

!x4 !xn

<EOS>!x1 !x4 !x5

<BOS>

…

!y1 !y2 !y3

!y2 !y3

!y4 !ym

<EOS>!y1 !y4 !y5

Decoder

Encoder

Attention pθ(x |y)

Conditional

<BOS>

…

!x1 !x2 !x3

!x2 !x3

!x4 !xn

<EOS>!x1 !x4 !x5

<BOS>

…

!y1 !y2 !y3

!y2 !y3

!y4 !ym

<EOS>!y1 !y4 !y5

Decoder

Encoder

Attention

Decoding
log pθ(x |y) =

n

∑
i=1

log pθ(xi |x1, x2, . . . , xi−1, y) =
n

∑
i=1

log pθ(xi |x<i, y)

Decoding space is
still exponential

Beam Search
log pθ(x |y) =

n

∑
i=1

log pθ(xi |x1, x2, . . . , xi−1, y) =
n

∑
i=1

log pθ(xi |x<i, y)

Heuristic search
by beam search

Multi-Head 
Attention

Add & Norm

Input
Embedding

Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

3

Inputs

N x

Feed Forward

Add & Norm

Output
Embedding

Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

3

Feed Forward

Add & Norm

Multi-Head 
Attention

Add & Norm

Add & Norm

Masked 
Multi-Head 
Attention

Linear

Softmax

Output 
Probabilities

Outputs 
(shifted right)

x N

Transformer

Vaswani et al., Kernelized Bayesian Softmax for Text
Generation, in NIPS, 2017.

Transformer abandon
RNN by using

Self-Attention!

Multi-Head 
Attention

Add & Norm

Input
Embedding

Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

3

Inputs

Feed Forward

Add & Norm

Output
Embedding

Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

3

Feed Forward

Add & Norm

Multi-Head 
Attention

Add & Norm

Add & Norm

Masked 
Multi-Head 

Linear

Softmax

Output 

Outputs 

MatMul

Scale

Mask (opt.)

SoftMax

MatMul

Q K V

Scaled Dot-Product Attention

Q

Scaled Dot-Product 
Attention

Linear Linear LinearLinear Linear Linear

Concat

Linear

h

K V

Multi-Head

Multi-Head Attention

Kernelized Bayesian Softmax

Miao et al., Kernelized Bayesian Softmax for Text Generation, in NeurIPS, 2019.

P(xt = sj
i) =

exp(𝒦θ j
i
(ht, wj

i))

∑k ∑r∈0,1,...,Nk
exp(𝒦θr

k
(ht, wr

k))

KerBS: Kernelized Bayesian Softmax

P(xt = i) = ∑
j∈0,1,...,Ni

P(xt = sj
i)

𝒦θ(h, e) = |h | |e | (a exp(−θ cos(h, e)) − a)

Here � is hidden state, � is embedding, � is a parameter controlling the embedding

variances of each sense and � is a normalization factor.

h e θ

a =
−θ

2(exp(−θ) + θ − 1))

where

Why KerBS?

Model capacity of softmax is not OK

Motivated by BERT, we may need context dependent embedding for
text generation!

Word2Vec BERT

Category Context
Independent

Context
Dependent

Capacity Low High

Performance Bad Good

Text Generation as Matching
Text Generation is Embedding Matching

apple

amazon

pear

…
…

Word Embeddings

inner-product

0.8

0.01

0.02

…

Word
Probability

tiger

want to eat an

want to eat an

softmax

RNN
decoder

Context Independent
Embedding

Context Dependent
Embedding

庄⼦：吾⽣也有涯，⽽知也无涯。以有涯随无涯，殆已！

Bottleneck of Text Generation

Bottleneck of text generation is the softmax

Embedding matrix in softmax should
have larger capacity.

Visualization of BERT

•Multi-Sense & Varying Variances

Softmax can handle this situation

Visualization of BERT

•Multi-Sense & Varying Variances

Softmax can’t handle multisense.

Visualization of BERT

•Multi-Sense & Varying Variances

Softmax can’t handle multisense and varying variances.

KerBS - Multisense
Each word may have several senses. KerBS
allocates a vector for each sense.

0.1
0.5

W

apple

amazon

…
…

tiger

θ Psense

…
…

softmax aggregate0
0.01
0.01

0

0.6

0.02

…
…

0

apple

amazon

tiger

Pword

KerBS - Multisense

After getting the probabilities of each sense,
KerBS sums up all sense probabilities of same
word.

P(xt = i) = ∑
j∈0,1,...,Ni

P(xt = sj
i)

KerBS - Varying Variances
The distribution of each word’s output vectors have different variances.
We use a variable kernel to represent varying variances.

P(xt = sj
i) =

exp(𝒦θ j
i
(ht, wj

i))

∑k ∑r∈0,1,...,Nk
exp(𝒦θr

k
(ht, wr

k))

𝒦θ(h, e) = |h | |e | (a exp(−θ cos(h, e)) − a)

Note that when , which is regular
Euclidean norm!

θ → 0,𝒦θ(h, e) → |h | |e | cos(h, e)

KerBS - Varying Variances

The distribution of each word’s output vectors have different
variances. We use a variable kernel to represent varying variances.

How to decide the sense
number of each word?

Dynamically change each word’s sense number while training.
Delete senses that are less used. Add senses to words which
are not well fitted.

Dynamic Allocation

0.1
0.5

eat an

to eat an

… …

W

apple

amazon

…
…

tiger

θ Psense

…
…

softmax aggregate

KerBS

I want a red apple

MASK

Decoder

mask

0
0.01
0.01

0

0.6

0.02

…
…

0

apple

amazon

tiger

Pword

apple

Kernel

0.1
0.5

weighted sum

get ‘’apple’’ embedding

apple

query embedding

copy

…

Distillation

Tuning

I want a red

Theoretical Guarantee

KerBS has the ability to learn the multi-sense property. If the real
distribution of context vectors consists of several disconnected
clusters, KerBS will learn to represent as many as these clusters

Lemma 1

KerBS has the ability to learn model variances. For distributions
with larger variances, KerBS learns larger � .θ

Lemma 2

KerBS can learn the multi-sense property.

KerBS can learn varying variances.

Experiments-Setting

We test KerBS on 3 text generation tasks:

1. Machine Translation (MT) is conducted on IWSLT’16 De-En,

which contains 196k pairs of sentences for training.

2. Language modeling (LM) is included. Following previous work,

we use a 300k, 10k and 30k subset of One-Billion-Word
Corpus for training, validating and testing.

3. Dialog generation (Dialog) is also included. We employ the
DailyDialog dataset for experiment.

Main Results

Tasks Metrics Seq2Seq Seq2Seq+MoS Seq2Seq+KerBS

MT BLEU-4 25.91 26.45 27.28

LM PPL 103.12 102.72 102.17

Dialog BLEU-1 16.56 13.73 17.85

Human Eval. 1.24 1.04 1.40

Case on Dialog

Source what do you mean ?
Seq2Seq i mean, what s up with the and iron bars on your windows.
Seq2Seq+MoS well, how can i put this? france is a terrible team.
Seq2Seq+KerB
S

well, i mean. we always do the same thing. there s no variety in
our lives.

Source now , what seems to be the trouble ?
Seq2Seq trouble is trouble.
Seq2Seq+MoS yeah. and he was.
Seq2Seq+KerB
S

not bad. but i have a bad cold today.

Source now , what seems to be the trouble ?
Seq2Seq trouble is trouble.
Seq2Seq+MoS yeah. and he was.
Seq2Seq+KerB
S

not bad. but i have a bad cold today.

Related Research
1. Inductive Bias:

 Better Structure for Parameterization

2. Non-AutoRegressive Generation

3. Pre-trained Learning by Generation

4. Application

 Story telling，machine translation，Summarization，Dialog，
Question Answering，etc.

Part 4
Text Generation by Variational

Auto-Encoders
Approximate Density with Variational Inference

Taxonomy of DGM

Maximum Likelihood Estimation

GAN

pθ(x) ⟷ pdata(x)

Adversarial Learning

Tractable Density Approximate Density

Density Factorization Variational Inference MCMC MCMC

Explicit Density Implicit Density

Variational Auto-Encoders

pθ(x) = ∫z
p(x |z)p(z)

Introducing Latent Variable:

z

x

Variational Lower Bound

pθ(x) = ∫z
p(x |z)p(z)

Introducing Latent Variable:

Hard to optimize due to the exponential z

Variational Lower Bound

pθ(x) = ∫z
p(x |z)p(z)

Introducing Latent Variable:

Optimizing the Variational Lower Bound

J = 𝔼
z∼q(z|x)

[−log p(x |z)] + KL(q(z |x)∥p(z))

Hard to optimize due to the exponential z

Motivation of VAE

① Why Including Latent Variables ？

② Why Variational Inference ？

Why Including Latent Variables ？

•Data	may	have	latent	structures!

MNIST HandWriting

Why Including Latent Variables ？

•Data	may	have	latent	structures!

N = 8

Why Including Latent Variables ？

•Data	may	have	latent	structures!

N = 8 N = 5

Why Including Latent Variables ？

•Data	may	have	latent	structures!

N = 8 N = 5

Why Including Latent Variables ？

•Data	may	have	latent	structures!

N = 8 N = 5 Left of 8 and right of 5

We can avoid the last case
with latent variable?

Loss between Instances

Question1: Which pair is more similar?

Question2: Which pair has lower loss?

Loss between Instances

Question1: Which pair is more similar?

Question2: Which pair has lower loss?

Including Latent Variable may be good
for generalization！

Why Including Latent Variables ？

Model capacity can be further improved

pθ(x) = ∫z
pθ(x |z)p(z)

With latent variable, we can present a very complex
using relatively simple ！
e.g. mixture of Gaussians can present distributions which are not Gaussians.

pθ(x)
pθ(x |z)

z

x

Why Variational Inference ？

pθ(x) = ∫z
pθ(x |z)p(z)

How to deal with the integral?

∑
all possible z

pθ(x, z) = |Z | (∑
z

pθ(x, z)
1

|Z |
) = |Z |𝔼z∼Uniform(Z)[pθ(x, z)]

Can be estimated by sample average

The expectation is intractable, we can use naive Monte-Carlo to
estimate ？

Why Variational Inference ？

To most z, is very small, we may also
never hit z with large .

pθ(x, z)
pθ(x, z)

We need a more clever way to select � to
reduce the variance of the estimator.

z

However, the naive Monte Carlo works in theory
but not in practice!

Variational Inference-Importance
Sampling Perspective

pθ(x) = ∫z
pθ(x |z)p(z)

= ∫z
Q(z)pθ(x |z)p(z)/Q(z)

= 𝔼z∼Q(z)pθ(x, z)/Q(z)

Introducing as proposal in importance sampling, obtaining a
less-variance estimation of .
Note that optimal = , with 0 variance.

Q
pθ(x)

Q pθ(z |x)

Derivation of ELBO
We are actually interested in � during MLE logpθ(x)

logpθ(x) = logEz∼Q[pθ(x, z)/Q(z)]
Jensen

Inequality
logpθ(x) ≥ Ez∼Qlog[pθ(x, z)/Q(z)]

Bayes Rule
logpθ(x) ≥ Ez∼Q[logpθ(x |z) + 𝕂𝕃[Q(z) | |P(z)]]

Replacing with
amortization

logpθ(x) ≥ Ez∼Q[logpθ(x |z) + 𝕂𝕃[Q(z |x) | |P(z)]]

Another Derivation of ELBO

𝕂𝕃[Q(z) | |P(z |x)] = Ez∼Q[logQ(z) − logP(z |x)]

𝕂𝕃[Q(z) | |P(z |x)] = Ez∼Q[logQ(z) − logP(x |z) − logP(z)] + logP(x)

Bayes Rule

logP(x) − 𝕂𝕃[Q(z) | |P(z |X)] = Ez∼Q[logP(X |z) − 𝕂𝕃[Q(z) | |P(z)]

Transposition

logP(x) − 𝕂𝕃[Q(z |X) | |P(z |X)] = Ez∼Q[logP(X |z) − 𝕂𝕃[Q(z |X) | |P(z)]

Replacing

“Auto-Encoder”

logP(x) − 𝕂𝕃[Q(z |X) | |P(z |X)] = Ez∼Q[logP(X |z) − 𝕂𝕃[Q(z |X) | |P(z)]

Decoder Encoder

This is why such variational Bayes model is so
called “Variational Auto-Encoder”

Training of VAE

Training Reparameterization
Carl Doersch, Tutorial on Variational Autoencoders, in arXiv:1606.05908.

Decoding

Back to the Motivation

• For text generation, the density is always decomposed
（Auto-Regressive）.

• What’s the benefits of VAEs?

VAE for Text Generation

Bowman et al., Generating Sentences from a Continuous Space, in CoNLL, 2016.

Latent Spaces of VAE

AE VAE

Benefits of VAE

• Regularized Latent Variables:
1. Sampling
2. Manipulating

VAE

Sequential
latent variables

Complex prior

Discrete VAE/DI-VAE

Posterior
Semi-amortized

flow

Adding extra
terms

Mutual Information

BOW loss

Training tricks

Adversarial loss

Variational RNN (VRNN)

Conditional VAE

Replacing KLD

Word dropout

Stochastic RNN

Mixture Priors

Semi-supervised VAE

Normalizing Flows

Inverse Autoregressive Flow (IAF)

SA-VAE

AAE/ARAE

Re-weighting KL

Beta-VAE

WAE

Info-VAE

KL-annealing

Aggressive Training

Global latent variable

Step-by-step latent variable

(Semi-)Hidden Markov latent
variable Neural Template

Variational Autoregressive
Decoder (VAD)

Latent Variable
Hierarchical Recurrent

Encoder-Decoder (VHRED)

CVAE

Gaussian Mixture VAE
(GMVAE)

VampPrior

(Chung et al., NIPS 2015)

(Bayer et al., ICLR 2015)

(Zhao et al., ACL 2018)

(Tomczak et al., AISTATS 2018)

(Dilokthanakul et al., ICLR 2017)

(Kingma et al., NIPS 2014)

(Zhao et al., ACL 2017)

(Serban et al., AAAI 2017)

(Du et al., EMNLP 2018)

(Wiseman et al., EMNLP 2018)

(Kingma et al., NIPS 2016)

(Rezende et al., ICML 2015)

(Kim et al., ICML 2018)

(Makhzani, 2015)
(Zhao et al., ICML 2018)

(Tolstikhin et al., ICLR 2017)

(Zhao et al., 2017)

(Zhao et al., ACL 2017)

(Higgins et al., ICLR 2017)

(Bowman et al., CoNLL 2015)

(He et al., ICLR 2019)

Spherical Latent Space
S-VAE

vMF-VAE

(Davidson et al., UAI 2018)

(Xu et al., EMNLP 2018)

VAE
Taxonomy

VAE

Sequential
latent variables

Complex prior

Discrete VAE/DI-VAE

Posterior
Semi-amortized

flow

Adding extra
terms

Mutual Information

BOW loss

Training tricks

Adversarial loss

Variational RNN (VRNN)

Conditional VAE

Replacing KLD

Word dropout

Stochastic RNN

Mixture Priors

Semi-supervised VAE

Normalizing Flows

Inverse Autoregressive Flow (IAF)

SA-VAE

AAE/ARAE

Re-weighting KL

Beta-VAE

WAE

Info-VAE

KL-annealing

Aggressive Training

Global latent variable

Step-by-step latent variable

(Semi-)Hidden Markov latent
variable Neural Template

Variational Autoregressive
Decoder (VAD)

Latent Variable
Hierarchical Recurrent

Encoder-Decoder (VHRED)

CVAE

Gaussian Mixture VAE
(GMVAE)

VampPrior

(Chung et al., NIPS 2015)

(Bayer et al., ICLR 2015)

(Zhao et al., ACL 2018)

(Tomczak et al., AISTATS 2018)

(Dilokthanakul et al., ICLR 2017)

(Kingma et al., NIPS 2014)

(Zhao et al., ACL 2017)

(Serban et al., AAAI 2017)

(Du et al., EMNLP 2018)

(Wiseman et al., EMNLP 2018)

(Kingma et al., NIPS 2016)

(Rezende et al., ICML 2015)

(Kim et al., ICML 2018)

(Makhzani, 2015)
(Zhao et al., ICML 2018)

(Tolstikhin et al., ICLR 2017)

(Zhao et al., 2017)

(Zhao et al., ACL 2017)

(Higgins et al., ICLR 2017)

(Bowman et al., CoNLL 2015)

(He et al., ICLR 2019)

Spherical Latent Space
S-VAE

vMF-VAE

(Davidson et al., UAI 2018)

(Xu et al., EMNLP 2018)

VAE
Taxonomy

Improve PGM

[1] Chung J, Kastner K, Dinh L, et al. A recurrent latent variable model for sequential data[C]//Advances in neural information processing
systems. 2015: 2980-2988.
[2] Bayer J, Osendorfer C. Learning stochastic recurrent networks[J]. arXiv preprint arXiv:1411.7610, 2014.
[3] Zhao T, Lee K, Eskenazi M. Unsupervised Discrete Sentence Representation Learning for Interpretable Neural Dialog Generation[C]//
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2018: 1098-1107.
[4] Dilokthanakul N, Mediano P A M, Garnelo M, et al. DEEP UNSUPERVISED CLUSTERING WITH GAUSSIAN MIXTURE VARIATIONAL
AUTOENCODERS[J].
[5] Tomczak J, Welling M. VAE with a VampPrior[C]//International Conference on Artificial Intelligence and Statistics. 2018: 1214-1223.
[6] Kingma D P, Mohamed S, Rezende D J, et al. Semi-supervised learning with deep generative models[C]//Advances in neural information
processing systems. 2014: 3581-3589.
[7] Zhao T, Zhao R, Eskenazi M. Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders[C]//
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2017: 654-664.
[8] Serban I V, Sordoni A, Lowe R, et al. A hierarchical latent variable encoder-decoder model for generating dialogues[C]//Thirty-First AAAI
Conference on Artificial Intelligence. 2017.
[9] Du J, Li W, He Y, et al. Variational Autoregressive Decoder for Neural Response Generation[C]//Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing. 2018: 3154-3163.
[10] Wiseman S, Shieber S, Rush A. Learning Neural Templates for Text Generation[C]//Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. 2018: 3174-3187.
[11] Rezende D, Mohamed S. Variational Inference with Normalizing Flows[C]//International Conference on Machine Learning. 2015:
1530-1538.
[12] Kingma D P, Salimans T, Jozefowicz R, et al. Improved variational inference with inverse autoregressive flow[C]//Advances in neural
information processing systems. 2016: 4743-4751.
[13] Kim Y, Wiseman S, Miller A, et al. Semi-Amortized Variational Autoencoders[C]//International Conference on Machine Learning. 2018:
2683-2692.
[14] Makhzani A, Shlens J, Jaitly N, et al. Adversarial autoencoders[J]. arXiv preprint arXiv:1511.05644, 2015. 
[15] Zhao J, Kim Y, Zhang K, et al. Adversarially Regularized Autoencoders[C]//International Conference on Machine Learning. 2018:
5897-5906.
[16] Tolstikhin I, Bousquet O, Gelly S, et al. Wasserstein auto-encoders[J]. arXiv preprint arXiv:1711.01558, 2017.
[17] Zhao S, Song J, Ermon S. Infovae: Information maximizing variational autoencoders[J]. arXiv preprint arXiv:1706.02262, 2017.
[18] Zhao T, Zhao R, Eskenazi M. Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders[C]//
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2017: 654-664.
[19] Higgins I, Matthey L, Pal A, et al. beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework[J]. ICLR, 2017, 2(5):
6.
[20] Bowman S, Vilnis L, Vinyals O, et al. Generating Sentences from a Continuous Space[C]//Proceedings of the Twentieth Conference on
Computational Natural Language Learning (CoNLL). 2016.
[21] He J, Spokoyny D, Neubig G, et al. Lagging Inference Networks and Posterior Collapse in Variational Autoencoders[J]. 2018.
[22] Xu J, Durrett G. Spherical Latent Spaces for Stable Variational Autoencoders[C]//Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. 2018: 4503-4513.
[23] Davidson T R, Falorsi L, De Cao N, et al. Hyperspherical Variational Auto-Encoders[J].

Reference

Variational Auto-Encoders

• VAE: Treating z as a random variable

- Imposing prior

- Variational posterior

- Optimizing the variational lower bound

pmodel(x) = ∫z
p(x |z)p(z)

p(z) = 𝒩(0, I)
q(z |x) = 𝒩(μμμNN, diag σσσ2

NN)

J = 𝔼
z∼q(z|x)

[−log p(x |z)] + KL(q(z |x)∥p(z))

Variational Auto-Encoders

pmodel(x) = ∫z
p(x |z)p(z)

Stochastic encoder Autoregressive decoder

Disentangling Syntax and
Semantics in Latent Space

Bao et al., Generating Sentences from Disentangled Syntactic and Semantic Spaces, in ACL, 2019.

BLEU VS. PPL

Bao et al., Generating Sentences from Disentangled Syntactic and Semantic Spaces, in ACL, 2019.

BLEU VS. PPL

Bao et al., Generating Sentences from Disentangled Syntactic and Semantic Spaces, in ACL, 2019.

Gaussian Mixture VAE

Shi et al., Fixing Gaussian Mixture VAEs for Interpretable Text Generation, in Arxiv, 1906.06719.

Mode-Collapse

Shi et al., Fixing Gaussian Mixture VAEs for Interpretable Text Generation, in arXiv, 1906.06719.

Theoretical Analysis

Shi et al., Fixing Gaussian Mixture VAEs for Interpretable Text Generation, in arXiv, 1906.06719.

Our Solution:

DGMVAE

Shi et al., Fixing Gaussian Mixture VAEs for Interpretable Text Generation, in arXiv, 1906.06719.

Visualization

Shi et al., Fixing Gaussian Mixture VAEs for Interpretable Text Generation, in arXiv, 1906.06719.

Results on PTB

Results on Dialog

Cases

Part 5
Text Generation by MCMC

Text Generation without Explicit Density and in Arbitrary Order

Taxonomy of DGM

Maximum Likelihood Estimation

VAE Boltzmann Machine GSN, CGMH

GAN

pθ(x) ⟷ pdata(x)

Adversarial Learning

Tractable Density Approximate Density

Density Factorization

RNN, Transformer

Variational Inference MCMC MCMC

Explicit Density Implicit Density

Generation by Sampling

• Could we better exploit sampling in text generation？

• Especially for some special cases!

Sampling has Larger Potentials

• sampling illustration for text generation

• GSN illustration

Problem Definition
• Generating sentence satisfying constraints:

• Hard constrains: Keyword must occur in sentences
–E.g. Juice -> Brand natural juice, specially made for

you
• Soft constrains: Semantically similar to a given

sentence (paraphrase)
–E.g. The movie is a great success -> It is one of my

favorite movies

Advertisement Slogan by
Constrained Generation

Rin clothes bright

Keywords from Advertiser Advertisement Slogan

Challenges

Main Idea of CGMH
• Instead of sampling from directly, generate

samples iteratively:
–Starting with initial keywords
–next sentence based on modification of previous
–action proposals to modify the sentences

• Metropolis-Hastings Algorithm

 𝜋(𝑥)

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

Metropolis Hastings Sampling

Metropolis-Hastings(MH) perform sampling by first proposes a
transition, and then accepts or rejects the transition.

! "# "$%&
= min	(1, / "# · 1 "$%& "#

/ "$%& · 1 "# "$%&
)

g is proposal distribution

State 1

State 4

State 3

State 2

Target
Distribution

Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …
6 Insert Accept BMW , the sports car of daily life
7 Replace Accept BMW , the sports car of future life
8 Insert Accept BMW , the sports car of the future life
9 Delete Reject BMW , the sports car of the future life
10 Delete Accept BMW , the sports car of the future life
11 [Output] BMW , the sports car of the future

Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports

Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car

Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car

Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …

Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …
6 Insert Accept BMW , the sports car of daily life

Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …
6 Insert Accept BMW , the sports car of daily life
7 Replace Accept BMW , the sports car of future life

Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …
6 Insert Accept BMW , the sports car of daily life
7 Replace Accept BMW , the sports car of future life
8 Insert Accept BMW , the sports car of the future life

Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …
6 Insert Accept BMW , the sports car of daily life
7 Replace Accept BMW , the sports car of future life
8 Insert Accept BMW , the sports car of the future life
9 Delete Reject BMW , the sports car of the future life

Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …
6 Insert Accept BMW , the sports car of daily life
7 Replace Accept BMW , the sports car of future life
8 Insert Accept BMW , the sports car of the future life
9 Delete Reject BMW , the sports car of the future life
10 Delete Accept BMW , the sports car of the future life

Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …
6 Insert Accept BMW , the sports car of daily life
7 Replace Accept BMW , the sports car of future life
8 Insert Accept BMW , the sports car of the future life
9 Delete Reject BMW , the sports car of the future life
10 Delete Accept BMW , the sports car of the future life
11 [Output] BMW , the sports car of the future

CGMH

CGMH performs constrained generation by:

1. Pretrain Language Model prob;

2. Start from a initial sentence;

3. Propose a new action and accept/reject the action.

Pretained LM in Target Distribution

ØWe set the stationary distribution as:
! " 	= % " · %' "

• %	 " = ∏ % ")|"+:)-.) is the probability of sentence
in a general-purpose language model.

• %'(")= ∏ %'1 "2 is the indicator function showing
whether constraints are satisfied.

CGMH: Action Proposal

ØWe use MH algorithm to sample from	" #
• From a sentence #$%&, we propose an action on one

word of #$%&.
• Actions include:

1. Replacement: change a word to another one
2. Insertion: add a word
3. Deletion: remove a word

CGMH: Acceptance Ratio

• Calculate the acceptance rate:
! "# "$%& = min	(1, / 01 ·3 "$%& "#

/ 0456 ·3 "# "$%&)

• Accept "# with probability ! "# "$%& Replacement Insertion Deletion

Generated sentences !"

Initial sentence !#

Select a position of sentence !"$%

Select an action on !"$%

Accept / Reject !& according to
'(!&|!"$%)
Accept: !" = !&
Reject: !" = !"$%

Calculate acceptance rate '(!&|!"$%)

Adversarial Example for Text

Zhang et al., Generating Fluent Adversarial Examples for Natural Languages, in ACL, 2019, short paper.

Generating adversarial example for text is hard!
Because the text space is discrete, which is non-
trivial to apply adversarial gradients!

CGMH for Generating Fluent
Adversarial Examples

Zhang et al., Generating Fluent Adversarial Examples for Natural Languages, in ACL, 2019, short paper.

CGMH for Generating Fluent
Adversarial Examples

Zhang et al., Generating Fluent Adversarial Examples for Natural Languages, in ACL, 2019, short paper.

CGMH for Generating Fluent
Adversarial Examples

Zhang et al., Generating Fluent Adversarial Examples for Natural Languages, in ACL, 2019, short paper.

Part 6
Text Generation by Generative

Adversarial Networks
Generation without Maximum Likelihood Estimation

Taxonomy of DGM

Maximum Likelihood Estimation

VAE Boltzmann Machine GSN, CGMH

GAN

pθ(x) ⟷ pdata(x)

Adversarial Learning

Tractable Density Approximate Density

Density Factorization

RNN, Transformer

Variational Inference MCMC MCMC

Explicit Density Implicit Density

What’s GAN ？

Generative Adversarial Networks:

z

x

Generator VS. Discriminator

Generator Discriminator

Fake Sentences

Real Sentences

Generator VS. Discriminator

Generator Discriminator

Fake Sentences

Real Sentences

Fake

Real

Generator VS. Discriminator

Generator Discriminator

Fake Sentences

Real Sentences

Real

Objective Revisit

Generative Adversarial Networks:

Essence of MLE

MLE = Minimizing KLD

Derivations in order: limit of summation turns into integral, flip max to min by negating, add a constant that doesn’t depends on
θ, and apply definition of KL divergence.

GAN -> JSD
Derivation of GAN -> JSD

MLE VS. GAN

min 𝔼x∼pdata
[−log pθ(x |y)]

Maximum Likelihood Estimation:

pθ(x |y) =
n

∏
i=1

pθ(xi |x1, x2, . . . , xi−1, y) =
n

∏
i=1

pθ(xi |x<i, y)

Generative Adversarial Networks:

KLD VS. JSD

Motivation of GAN for Text
Generation

• Exposure Bias
• Discrepancy between training and inference

• Multi-Modal Output
• GAN may better address the multi-modal output

than MLE training

GAN for Text

Text is discrete, hard to propagate
gradients from D to G !

BackPropagation Fails
• Sentence is discrete, BP fails in such case

• Policy Gradient
• Gumbel Softmax

Observations

GAN tend to generate less diverse sentences than MLE
training.

Thank You!

